EPIC member Milica Radisic hosts Kam Leong (Columbia University) as part of the Institute of Biomedical Engineering’s Invited Academic Speaker Series.
Talk abstract:
Inflammation serves as a crucial defense mechanism, alerting our bodies to damage and aiding in the restoration of homeostasis. However, when inflammation becomes excessive or chronic, it can manifest as a range of debilitating diseases, including cancer, autoimmune disorders, and wound healing. Controlling the inflammatory response is a pivotal aspect of managing these conditions. While conventional drug therapies remain the mainstay of treatment, biomaterials are increasingly gaining traction as an alternative approach. Biomaterials offer a promising strategy for targeted drug delivery to inflamed sites, enhancing bioavailability and minimizing systemic side effects. Additionally, they can act as scavengers, removing pro-inflammatory factors to directly suppress inflammation. This scavenging approach has demonstrated efficacy in treating inflammatory diseases such as rheumatoid arthritis, psoriasis, multiple sclerosis, and systemic lupus erythematosus. A key factor in the pathogenesis of these diseases appears to be the aberrant activation of innate immune sensors, particularly Pattern Recognition Receptors (PRRs), triggered by nucleic acids released from damaged or dying cells. In this presentation, I will discuss the application of nucleic acid-binding polymers as a multifaceted strategy for combating inflammation. These polymers not only effectively neutralize pro-inflammatory nucleic acids but also serve as versatile therapeutic carriers for drug delivery. Through an exploration of their mechanisms of action and therapeutic potential, I will present the promise of nucleic acid-binding polymers as a new approach to managing inflammatory diseases.